

New members, fellows ar

new members, rellows
FELLOWS
Gidney, Graeme Edinburgh, United Kingdom
Selvey, Adam Peter
Birmingham, United Kingdom
Chan, Steward Chi Sing Lantau, Hong Kong
Reynolds, Stephen
London, United Kingdom
MEMBER Charmon Stanban
Chapman, Stephen Sutton, United Kingdom
Crosbie, Stephen Bangor, United Kingdom
Proctor, Nigel John
Banbridge, United Kingdom Carr, Quincy Lee Jackson
St Albans, United Kingdom
Cooper, Andrew Farnham, United Kingdom
Thompson, Brian
Chelmsford, United Kingdom Richardson, Ben
Basingstoke, United Kingdom
Matheson, Graeme Tyne and Wear, United Kingdom
Maclean, Calum Bracknell, United Kingdom
Jones, Rhys
Exeter, United Kingdom
Tetlow, Richard Chippenham, United Kingdom
Toolan, Shane London, United Kingdom
Baxter, Martin Eric
Caterham, United Kingdom Allison, Kristina
Abbotts Langley, United Kingdom
Huggett, Elinor London, United Kingdom
Howden, Steve
Bexleyheath, United Kingdom Carter, Steven Philip Brian
Truro, United Kingdom Gallagher, Alison
London, United Kingdom
Garcia, Jaime Bracknell, United Kingdom
Houghton, Paul James
North Elmham, United Kingdom Brookes, Jared
London, United Kingdom
Roberson, Peter Jonathan Maldon, United Kingdom
Menzies, Matthew Manchester, United Kingdom
loannidou, Koula
London, United Kingdom Verniers, John
London, United Kingdom
Elnahas, Youssef London, United Kingdom
Beddoe, Alastair
Birmingham, United Kingdom Huband, Nick
Welshpool, United Kingdom
Bhardwaj, Vikram Bracknell, United Kingdom
Mousley, Sam Richard
Nottingham, United Kingdom Ruiz Bolivar, Andrea Alexandra
Ashford, United Kingdom
Masood, Sana Reading, United Kingdom
Baines, Neil Prenton, United Kingdom
Evans, Erik
Edinburgh, United Kingdom

Edinburgh, United Kingdom

nd associates
Kennah, Steven Chester, United Kingdom
Blackhurst, Jonathan
Stockport, United Kingdom Acheson, William
Enniskillen, United Kingdom Bryce, Leigh
Fareham, United Kingdom
Alwan, Zaid Newcastle Upon Tyne, United Kingdom
Di Maggio, Maria Sara Terrasini (PA), Italy
Pratviel, Stanislas London, United Kingdom
Miriana, Simone
London, United Kingdom Papantoniou, Georgios
Bristol, United Kingdom Gkanis, Nektarios
London, United Kingdom
Tsang, Yuen Chong Ivy Kowloon, Hong Kong
Chan, Ka Shing Yau Tong, Hong Kong
Chung, Wai Sang Shatin, Hong Kong
Lui, Chun Tim, Geoffrey
Sheung Shui, Hong Kong Yu, Kai Yin
Fanling, Hong Kong Liebenberg Meyer, Timothy
London, United Kingdom
Caldwell, David Glasgow, United Kingdom
Finch, Will London, United Kingdom
Drysdale, lan Doncaster, United Kingdom
Croucher, Tom Woolston, United Kingdom
Walton, Thomas Daniel
St Albans, United Kingdom Brown, Nick
Bristol, United Kingdom Gledhill, David
Bradford, United Kingdom Lowe, David
Birmingham, United Kingdom
Baillie, Matthew Newbury, United Kingdom
Day, James Watford, United Kingdom
Nally, Stephen Roscommon, reland
So, Gladys Kam Ling Northbridge, Hong Kong
Fitzgerald, Rebecca
Botany, Australia Pope, Ian
Berkhamsted, United Kingdom Gheidi, Sepideh
St Albans, United Kingdom Qiu, Feng
London, United Kingdom
Shaw, Rachel Rotherham, United Kingdom
Harilal, Grisha Bristol, United Kingdom
Sadr, Faramarz
Maidenhead, United Kingdom Burman, Esfandiar Fetcham,
Leatherhead, United Kingdom Dehkal, Redouane Samir
London, United Kingdom Treglia, Marco
London, United Kingdom Weglarz, Roman Piotr
WESTAL / KOMAN PIOUS

Weglarz, Roman Piotr

London, United Kingdom

Cooper, Nathan

Maidenhead, United Kingdom

Stevenson, Ross Edinburgh, United Kingdom	
Kapenis, Georgios Manchester, United Kingdom	
Hamblin, Adam Richard John	
London, United Kingdom McHugh, Christina Elizabeth	-
Stanford-le-Hope, United Kingdom Kia, Oian	-
London, United Kingdom	-
Bisson, Marta Mitcham, United Kingdom	
Heede, Benjamin Alexander Bournemouth, United Kingdom	
Bhalerao, Ranjeet Vivek	-
London, United Kingdom Barrett, Mark	-
Edinburgh, United Kingdom Ewing, Katie Jane	-
London, United Kingdom	-
Yang, Jing London, United Kingdom	
Riggs, Samuel London, United Kingdom	
Ricchetti, Antonio Bedford, United Kingdom	
Howlett, Ruth	
Sidcup, United Kingdom Pastuszak, Michal	-
Birmingham, United Kingdom Suen, Wun Wun	-
Lai Chi Kok, Hong Kong	_
C hau, Ho Yung Kowloon, Hong Kong	
Ali, Nimco Harrow, United Kingdom	
Rodriguez, Jaime	
Bromley, United Kingdom Paluszynski, Przemyslaw	-
Lewków, Poland Naldzhiev, Dzhordzhio	-
London, United Kingdom	
Watt, Neil Stuart London, United Kingdom	
Swobodzian, Marta Agnieszka Leeds, United Kingdom	
Stevens, Alexander Charle	-
London, United Kingdom Man Wai Jazz, Tse	-
Tuen Mun, Hong Kong Chan, Mei Kuen	-
Lantau Island, Hong Kong	-
Papapostolou, Emmanoui London, United Kingdom	_
Blundy, Tom Southwater, United Kingdom	
McNaughton, Daniel	-
Farringdon, United Kingdom Wong, Kin Yan	-
Kowloon, Hong Kong So, Ming Chung William	-
Kennedy Town, Hong Kong	-
Bemister, Adam Nicholas London, United Kingdom	_
Ward, Neil Christopher Crowborough, United Kingdom	
Buica, Adrian London, United Kingdom	
Arif, Muhammad	
London, United Kingdom Koronaios, Georgios	-
Harrow, United Kingdom	-
Smith, Jocelyn Bristol, United Kingdom	_
Mather, David George Reading, United Kingdom	
Brooks, Ben London, United Kingdom	
Llasera, Tomas	
Cardiff, United Kingdom	

Elliot, Mark London, United Kingdom Darbha, Harshita Romford, United Kingdom Zhu. Junii London, United Kingdom Axelrod, Jolyon Hampton, United Kingdom Watabiki, David Shiro Wolverhampton, United Kingdom Tiemann Isahel London, United Kingdom Sykes, Joshua Stephen Sheffield, United Kingdom Przydrozna, Aleksandra Ann Cambridge, United Kingdom Al-Mukhtar, Feras Egham, United Kingdom Abela, Clyde London, United Kingdom Armentia Iniguez, Christian Ala Bristol, United Kingdom Chan, Hei Henry Sha Tin, Hong Kong Constantinou, Demetrios London, United Kingdom Perniola, Rossella London, United Kingdom Leung, Chiu Kit Kevin Kowloon, Hong Kong Coleman, Alexandra London, United Kingdom Morv. Lucas Toulouse, France Denev. Nedvalko Sutton, United Kingdom Kinnell, David Swadlincote, United Kingdom Hopkins, Timothy James Newcastle-under-Lyme, United Kingdom Stephenson, James Thoma Manchester, United Kingdom Brownstein, David Birmingham, United Kingdom Lesniewska, Martyna Redditch, United Kingdom Lewis, Edward Ludlow, United Kingdom Balukiewicz, Joanna Wigston, United Kingdom Martinez Gomez, Javier Antoni Arnold, United Kingdom Saxena, Anuraag Nottingham, United Kingdom Cui, Jia Michelle Nottingham, United Kingdom Choi, Hin Fai Raymond Tin Shui Wai, Hong Kong Owen, Jeremy David Nottingham, United Kingdom Chan, Chun Keung Bauhinia Garden, Hong Kong McSoley, Paul James Stanford-le-Hope, United Kingdom Malhotra, Sarvesh Maidenhead, United Kingdom Smith. Carl Langdon Hills, United Kingdom Sreekeessoon, Tarun New Grove, Mauritius Williams, Michael Jon Brighton, United Kingdom Chan. Wai Kit Tsuen Wan, Hong Kong Jankowski, Slawomii Glasgow, United Kingdom Mavridis, Lazaros London, United Kingdom

Gilmour-White, William Graham Honiton, United Kingdom Glensman, Kate London, United Kingdom Jones, Lyudmila St Albans, United Kingdom Lau, Alfred Wui Chun Hong Kong, Hong Kong Marchisotta, Antonio London, United Kingdom Mujtuba, Anzar Brentwood, United Kingdom Bowman, Geoffrey David Rochester, United Kingdom Alo, Babafunsho Milton Keynes, United Kingdom Rabadia, Raj London, United Kingdom ASSOCIATE Hall, Andrew Beckenham, United Kingdom Fox, Christopher Daniel Mold, United Kingdom Hickman, Mark Birmingham, United Kingdom Catchpole, Mark Dartford, United Kingdom Bull, Paul James Cardiff, United Kingdom Jones, Nathan Loughton, United Kingdom Woodhead, Adrian Huddersfield, United Kingdom Watson, David Matthew Leeds, United Kingdom Muralidharan, Vishnu Havwards Heath, United Kingdom Coldrey, Tom Exeter, United Kingdom Sapina-Grau, Antoni London, United Kingdom **Keen, George** Welling, United Kingdom Ogunlade, Daniel Dulwich, United Kingdom Atkins, Christopher Bicester, United Kingdom Wilkinson, Ross Alan Welwyn Garden City, United Kingdom Headlev. Luke Warwickshire, United Kingdom Ruiz Blanco, David Felix Manchester, United Kingdom LICENTIATE Finestone, Harry London, United Kingdom Reilly, Ronan London, United Kingdom Sanjeev, Jeyatharsine Cheshunt, United Kingdom Wheeler, Chris Manchester, United Kingdom Pool, James Bristol, United Kingdom Coyle, Kieron William Cardiff, United Kingdom Jayes, Lauryn Nottingham, United Kingdom Mulvanny, Sara Manchester, United Kingdom Natarajan Theyagarajan, Nitharshan London, United Kingdom Yehezkel, Rachel Leeds, United Kingdom Leary, James Guildford, United Kingdom Brown, Michael Allan Dunmow, United Kingdom Chen, Tianqi Anton-Barro, Miguel

Stratford-Upon-Avon, United Kingdom

14 March 2019 www.cibsejournal.com www.cibsejournal.com March 2019 15

Shanghai, China

Global reform

Following reviews of construction in high-rise residential buildings, the construction sector is facing major change with calls for a significant update of regulations. Hywel Davies reports

n response to the outcry over failings in tall buildings, government is set to introduce a Building Commissioner with responsibility for auditing workers in the industry. There will be greater protection for homeowners and owners' organisations. to help them obtain compensation if builders or engineers have been negligent. The response has been described as the 'biggest shake-up in building and construction laws in our... history.'

An independent report found that the 'nature and extent of the problems [in the industry] are significant and concerning', and 'likely to undermine public trust in the health and safety of buildings if they are not addressed in a comprehensive manner'.

It calls for registration schemes for builders, surveyors, architects, engineers, designers, and building inspectors and new mechanisms for training and licensing. The government proposals are intended to ensure that 'people who work in the building and construction industry' will have 'to take responsibility for their work.'

The proposals are likely to mean 'requiring designers to sign off on their designs, and builders to build their buildings in line with those designs.' The proposed commissioner would have responsibility for enforcing the licensing scheme.

Other measures will give builders less control over the certifiers responsible for approving their work, and a bond defects scheme will make it easier for homeowners to remedy defective work.

The proposals are part of the state government of New South Wales' response to a major review commissioned in August 2017 – and published in April 2018 – by the Building Ministers' Forum, a collective of Australian state and territory ministers. Its report was the culmination of six months' investigation by the chancellor of Western Sydney University, Peter Shergold, and lawyer Bronwyn Weir, who has many years' experience of building regulations. Further responses will be delivered across Australia in the coming weeks.

The report was commissioned in reaction to a series of problems with tall residential buildings in Australia, including a fire in the Lacrosse Building in Melbourne. Since it was published, there have been highly publicised structural failures in the 36-storey Opal Tower, at Sydney

"Issues facing engineers and their associations across the world are very similar"

Olympic Park. Significant cracks that developed in December 2018 have been attributed to design and construction failures. In early February, there was another high-rise fire in Melbourne, in a block of flats in Spencer Street.

Six days later, NSW fair trading minister Matt Kean released his response to the Shergold Weir report into compliance and enforcement in the Australian building industry. When you buy a property in NSW, you have every right to expect that [it] is safe, structurally sound, and free from major defects. And, unfortunately, that is not always the case,' said Kean.

He announced the state government would accept the 'vast majority' of the 24 recommendations in the Shergold Weir report, published just three weeks before Building a Safer Future, Dame Judith Hackitt's review of building regulations and fire safety in England.

The two reports review building regulations in their respective countries and recommend reform. They are quite different, reflecting their respective terms of reference and context, and considerable

differences between building regulations in the eight Australian jurisdictions and in England. However, the reports' observations on building practices, culture and regulatory oversight are remarkably similar, and there is scope to learn from each other. Similarities include:

Support for performance/outcomes-based building **standards**. Both reports conclude that standards for building construction must allow innovation and use of new and emerging products and building methods. They also acknowledge that a performance- or outcomesbased model requires high levels of competency and transparency, which are lacking in current practices.

Architects and designers should be obliged to produce designs that show a proposed building will meet required safety standards. They should supply full evidence that relevant safety considerations have been addressed and managed, and that the building will comply with all relevant legislative requirements.

The role of building surveyors or control officers in both jurisdictions, and the need to avoid conflicts of interest and clients choosing their enforcement officials. Australia has four models across its eight jurisdictions but, where owners or builders can engage a private surveyor or local government to issue approvals, the process to be followed is essentially the same. There are similarities between Dame Judith's model and those in Western Australia, South Australia and, to some extent, Tasmania.

Greater control over changes to approved designs. In particular, over changes to design in 'design and construction' models and during 'value engineering', with tighter control and full records of changes, which need to be enforced effectively. Linked to this is the need for:

Record keeping using digital records, to deliver and maintain key building design and safety information using new and emerging technologies (such as BIM) to give owners and safety managers access to all relevant information for the life of the building.

Competency of building practitioners, with both reports recommending improved competency of key practitioners so that performance/outcomes-based design and construction is delivered by those who demonstrate and evidence adequate qualifications and skills. The Shergold Weir report recommends a harmonised registration scheme for all eight Australian jurisdictions and compulsory professional development.

Comprehensive regulatory enforcement powers supported by meaningful penalties, to reward a compliance-based culture, with high-level coordination of relevant regulators - the 'joint competent authority' in Dame Judith's scheme.

Both reports also address the role of fire authorities, maintenance of fire-safety systems during occupation, and building product safety and quality assurance.

The issues facing governments across the world, as well as professional engineers, are very similar as they strive to rebuild trust and confidence in their building and construction sectors. CIBSE is a global engineering body with members in the UK and Australia, so there is plenty of scope to work together to respond to the challenges our sector faces. While the exact destination may vary from state to state, the direction of travel is clear: regulatory change is coming, and we need to embrace it.

DR HYWEL DAVIES www.cibse.org

Shaping a low carbon future, together

Work by the government on Building Regulations and the future of heat offers many opportunities to be involved with CIBSE activities, says the **Institution's Julie Godefrov**

n the past 10 years, the UK has achieved significant carbon savings through the decarbonisation of the electricity grid. Decarbonising heat is now acknowledged as one of the biggest challenges if the UK is to continue on its trajectory and meet its carbon-reduction targets.

The Department for Business, Energy and Industrial Strategy (BEIS) is exploring how this may happen, and has published its analysis of technology and policy options.

Much aligns with recommendations by CIBSE and others: there is currently no clear, single contender to replace the wide coverage and convenience of gas heating, and a low carbon heating future is likely to require a mix of options. These include electric heating (with a large role for heat pumps); hydrogen, whether used in fuel cells or for decarbonising the gas grid; and heat networks, particularly in dense and mixed-use areas, where they can take advantage of alternative fuel sources and heat rejection from cooling systems, the Tube or other processes.

BEIS also seems to have acknowledged that the market alone cannot deliver such substantial changes, capital investments

"Buildings that are not connected to the gas grid are likely to be the early test beds of future low carbon heat options"

and infrastructure upgrades, while still keeping energy affordable and protecting consumers: a mix of policy requirements and incentives will be required. The department also stresses the importance of increasing consumer awareness. While this is true, there are probably other key drivers that have more of an influence on the heating choices made by consumers. These include convenience, affordability, advice from suppliers and overcoming the caution of installers towards new products. New regulations will be needed to provide the catalyst.

Buildings that are not connected to the gas grid are likely to be the early test beds of future low carbon heat options - an approach CIBSE has long advocated.

The Institution will continue to develop guidance in this area, in particular for future heat networks (4th and 5th generation and ambient loops), electric heating, and demand management. Get in touch if you are interested in taking part.

Beyond questions of how to meet demand, CIBSE has repeatedly stressed that we must consider energy efficiency, both to deliver carbon savings and to increase the feasibility of low-carbon

supply options. Simply put, without demand reduction it is unlikely we will have enough capacity to supply heat entirely from low carbon sources, particularly when huge increases in electricity demand are expected in the transport sector from electric vehicles.

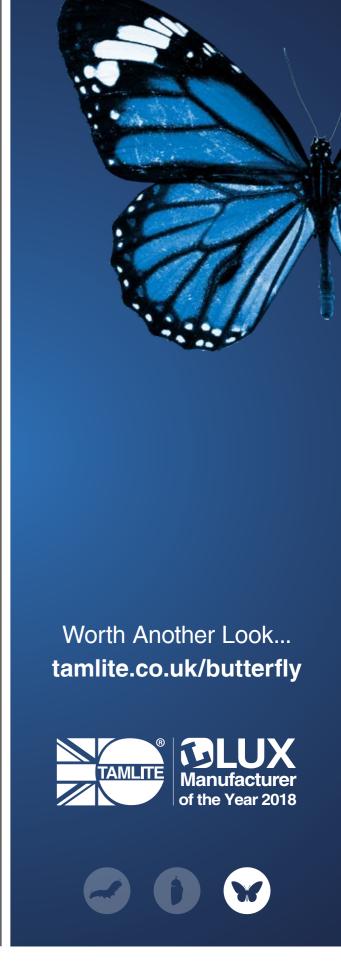
Collaboration on Building Regulations -CIBSE and the UK Green Building Council

After our detailed position paper on recommendations for changes to Building Regulations Part L and F, CIBSE has worked with the UK Green Building Council to produce a common summary statement. The aim of this is to send a consistent message to government and influence the upcoming review of these parts of the Building Regulations. Key elements include:

- Establishing a clear trajectory to 'zero carbon', so the industry can start adopting stretching targets and developing cost-effective solutions
- Exploring how to gradually introduce requirements on operational energy and carbon, rather than design and as-built requirements alone. As a very first step, this should start with gathering data on operational performance
- Better addressing indoor air quality and overheating. Both papers can be found at bit.ly/CJMar19pos

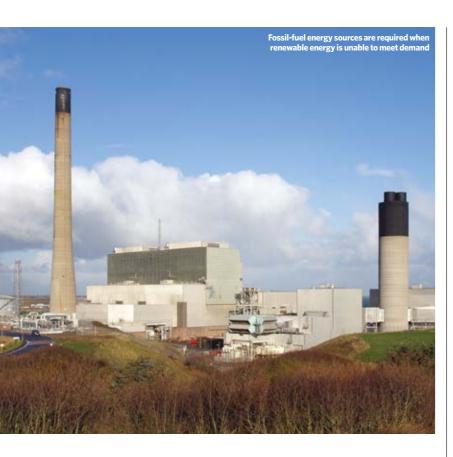
Environmental regulations

CIBSE has responded to consultations on environmental regulations - an area likely to be most affected by Brexit:


- Department for Environment, Food and Rural Affairs consultation on monitoring of environmental indicators: we broadly support this, and have advocated a more robust framework, including a better culture of assessing policy effectiveness, and reporting against science-based objectives (for example World Health Organization air quality guidelines), not just against the government's own targets
- Parliamentary inquiry on the Environment Bill, which sets the framework for environmental regulations and enforcement post-Brexit: we support a number of proposals; however, we also have serious concerns, including the independence of the future body that will hold government to account.

Current consultations:

- Air pollution control programme: respond to CIBSE by 4 March
- We are working with the Royal Academy of Engineering to inform the UK's post-Brexit immigration strategy. Let us know if you would like to inform our work – for example, if you have assessed how skills and/or salary criteria may affect your business.
- All can be found at cibse.org/news-and-policy/consulta



JULIE GODEFROY

18 March 2019 www.cibseiournal.com www.cibseiournal.com March 2019 19

FEEDBACK

The issues of polluting neighbours and carbon factor calculations

A different approach

Ylin 魚 塚

Join the conversation

We want to hear

@CIBSEJournal

CIBSE LinkedIn

www.cibse.org

our newsletter

Receive our top stories

about building services

engineering. Sign up at cibsejournal.com

Subscribe to

from you. Talk to us.

I read the opinion article by Mike Hefford ('Other factors', CIBSE Journal, February 2019) with interest, and certainly agree with his call for wider decentralisation of power generation using CHP integrated with other low carbon technologies.

However, I cannot agree with his endorsement of the use of averages for grid carbon value, be it over a month, year or any other period. This is because focusing on average carbon content disguises the high carbon content of the dispatchable power being used every day to 'top up' low carbon sources, such as wind and solar.

To clarify, dispatchable sources of electricity are those that can be dispatched at the request of power-grid operators and used on demand when renewable energy sources are unable to meet demand. Dispatchable power also provides our 'insurance' against the lights going out when the wind isn't blowing and the sun is obscured by cloud.

The fact that so much of our renewable capacity is at the mercy of the vagaries of the weather means we will always need this dispatchable capacity, irrespective of the installed renewable capacity. In fact, increased use of electrical/electronic technologies, electric cars, heat pumps and so on will increase the UK's power demands in coming years, which increases the backup capacity requirement.

The energy source of this dispatchable power is known as the marginal energy source. Even with the significant increases we've seen in renewable capacity over the past few years, that marginal energy source is still predominantly inefficient, gas-fired power stations, with a little coal thrown in when demand is high. So I believe it is this marginal carbon factor that we should be focusing on, rather than an average carbon factor from all power sources (wind, solar, nuclear, gas, coal).

Moreover, I would argue that focusing on the dispatchable marginal carbon factor, rather than the average carbon factor, is the only way we can effectively resolve the UK's energy trilemma - namely, the need to simultaneously reduce carbon emissions, cut energy costs and ensure security of supply.

Focusing on the marginal energy source reinforces our continued dependence on gas and, crucially, the imperative to use that gas more wisely and efficiently. Such a focus naturally leads us to wider use of 'prosumer' buildings that produce and consume energy. Typically, these would use decentralised CHP combined with heat pumps and electric boilers, in a smart system that can avail itself of green grid electricity when appropriate.

As well as taking pressure off the grid and making more efficient use of fossil-fuel energy sources, decentralising a higher proportion of our dispatchable power meets all of the requirements of the energy trilemma. This approach also has implications for the proposed SAP 10, in terms of using a more realistic carbon factor based on marginal energy sources. In parallel, there is a need to enhance the functionality of SAP software to facilitate the use of the mixed hybrid systems described above, which are not supported in the current version of SAP.

The fact that the Department for Business, Energy and Industrial Strategy is now reconsidering the lower carbon factor proposed in the draft SAP 10 is clearly to be welcomed.

Lars Fabricius Managing director, SAV Systems

Hard to breathe

I was very interested in the article regarding wood burning. I suffer first hand from a neighbour's chimney that manages to engulf our house in smoke that eventually enters through window and underfloor vents. Apart from the disgusting smell, I am now wondering if we are breathing in any 'nasties'.

I appreciate there is nothing we can do to stop the burning, but I am enquiring of your readers to see if they have had similar experiences - and would welcome any advice.

Colin Smith, ACIBSE

CIBSE Journal welcomes readers' letters, opinions, news stories, events listings, and proposals for articles Please send all material for possible publication to or write to: Alex Smith, editor, CIBSE Journal, CPL, 1 Cambridge Technopark, Newmarket Road, Cambridge CB5 8PB, UK. We reserve the right to edit all letters

New compact

side guides,

which visually

improve product

aesthetics

Intelligent motor software...

..Controls more units than the competition

Independently certified to comply with: BS 8524

& EN 1634

curtain...

The NEW Colt fire curtain is not just a fire

Colt People provide in-house:

- Design
- Project Management

- Handle more projects
- Wider range of expertise

Being market leader

More experienced employees

Gravity fail safe motors..

...extending the motor life

Manufacture Servicing

www.coltinfo.co.uk | info@coltinfo.co.uk | 02392 451111

Take control of your indoor climate

Inspired by the advanced simplicity of today's smartphones, our newly developed control system - Systemair Access. Making it effortless to navigate and utilize the full functionality of Systemair air handling units.

Access is now included in our Topvex and Geniox units.

Scan the QR-code for more information about the new control system Access from Systemair

New members, fellows an

ivew members, rellov	V
FELLOWS	
Gidney, Graeme Edinburgh, United Kingdom	
Selvey, Adam Peter	
Birmingham, United Kingdom	_
Chan, Steward Chi Sing Lantau, Hong Kong	
Reynolds, Stephen	_
London, United Kingdom	
MEMBER	
Chapman, Stephen Sutton, United Kingdom	
Crosbie, Stephen	_
Bangor, United Kingdom Proctor, Nigel John	_
Banbridge, United Kingdom	
Carr, Quincy Lee Jackson St Albans, United Kingdom	
Cooper, Andrew	_
Farnham, United Kingdom Thompson, Brian	
Chelmsford, United Kingdom	
Richardson, Ben Basingstoke, United Kingdom	
Matheson, Graeme	_
Tyne and Wear, United Kingdom	
Maclean, Calum Bracknell, United Kingdom	
Jones, Rhys	
Exeter, United Kingdom Tetlow, Richard	-
Chippenham, United Kingdom	
Toolan, Shane London, United Kingdom	
Baxter, Martin Eric	
Caterham, United Kingdom Allison, Kristina	-
Abbotts Langley, United Kingdom	
Huggett, Elinor London, United Kingdom	
Howden, Steve	
Bexleyheath, United Kingdom Carter, Steven Philip Brian	-
Truro, United Kingdom	_
Gallagher, Alison London, United Kingdom	
Garcia, Jaime	
Bracknell, United Kingdom Houghton, Paul James	-
North Elmham, United Kingdom	
Brookes, Jared London, United Kingdom	
Roberson, Peter Jonathan	
Maldon, United Kingdom Menzies, Matthew	_
Manchester, United Kingdom	
Ioannidou, Koula London, United Kingdom	
Verniers, John	
London, United Kingdom Elnahas, Youssef	_
London, United Kingdom	
Beddoe, Alastair Birmingham, United Kingdom	
Huband, Nick	_
Welshpool, United Kingdom Bhardwaj, Vikram	_
Bracknell, United Kingdom	
Mousley, Sam Richard Nottingham, United Kingdom	
Ruiz Bolivar, Andrea Alexandra	_
Ashford, United Kingdom Masood, Sana	_
Reading, United Kingdom	
Baines, Neil Prenton, United Kingdom	
Evans, Erik	_
Edinburgh, United Kingdom	

Edinburgh, United Kingdom

nd associates
Kennah, Steven Chester, United Kingdom
Blackhurst, Jonathan
Stockport, United Kingdom Acheson, William
Enniskillen, United Kingdom
Bryce, Leigh Fareham, United Kingdom
Alwan, Zaid Newcastle Upon Tyne, United Kingdom
Di Maggio, Maria Sara Terrasini (PA), Italy
Pratviel, Stanislas London, United Kingdom
Miriana, Simone
London, United Kingdom Papantoniou, Georgios
Bristol, United Kingdom Gkanis, Nektarios
London, United Kingdom
Tsang, Yuen Chong Ivy Kowloon, Hong Kong
Chan, Ka Shing Yau Tong, Hong Kong
Chung, Wai Sang Shatin, Hong Kong
Lui, Chun Tim, Geoffrey
Sheung Shui, Hong Kong Yu, Kai Yin
Fanling, Hong Kong Liebenberg Meyer, Timothy
London, United Kingdom
Caldwell, David Glasgow, United Kingdom
Finch, Will London, United Kingdom
Drysdale, lan Doncaster, United Kingdom
Croucher, Tom
Woolston, United Kingdom Walton, Thomas Daniel
St Albans, United Kingdom Brown, Nick
Bristol, United Kingdom Gledhill, David
Bradford, United Kingdom
Lowe, David Birmingham, United Kingdom
Baillie, Matthew Newbury, United Kingdom
Day, James Watford, United Kingdom
Nally, Stephen
Roscommon, reland So, Gladys Kam Ling
Northbridge, Hong Kong Fitzgerald, Rebecca
Botany, Australia
Pope, lan Berkhamsted, United Kingdom
Gheidi, Sepideh St Albans, United Kingdom
Qiu, Feng London, United Kingdom
Shaw, Rachel
Rotherham, United Kingdom Harilal, Grisha
Bristol, United Kingdom Sadr, Faramarz
Maidenhead, United Kingdom
Burman, Esfandiar Fetcham, Leatherhead, United Kingdom
Dehkal, Redouane Samir London, United Kingdom
Treglia, Marco

Treglia, Marco

Cooper, Nathan

London, United Kingdom

Weglarz, Roman Piotr

London, United Kingdom

Maidenhead, United Kingdom

tevenson, Ross	
dinburgh, United Kingdom apenis, Georgios	
lanchester, United Kingdom	
amblin, Adam Richard John ondon, United Kingdom	
IcHugh, Christina Elizabeth tanford-le-Hope, United Kingdom	
ia, Qian	
ondon, United Kingdom isson, Marta	
litcham, United Kingdom	
eede, Benjamin Alexander ournemouth, United Kingdom	
halerao, Ranjeet Vivek ondon, United Kingdom	
arrett, Mark	
dinburgh, United Kingdom wing, Katie Jane	
ondon, United Kingdom	
ang, Jing ondon, United Kingdom	
iggs, Samuel ondon, United Kingdom	
icchetti, Antonio edford, United Kingdom	
owlett, Ruth	
idcup, United Kingdom astuszak, Michal	
irmingham, United Kingdom	
u en, Wun Wun ai Chi Kok, Hong Kong	
h au, Ho Yung owloon, Hong Kong	
li, Nimco arrow, United Kingdom	
odriguez, Jaime	
romley, United Kingdom aluszynski, Przemyslaw	
ewków, Poland aldzhiev, Dzhordzhio	
ondon, United Kingdom	
Jatt, Neil Stuart ondon, United Kingdom	
wobodzian, Marta Agnieszka eeds, United Kingdom	
tevens, Alexander Charle	
ondon, United Kingdom lan Wai Jazz, Tse	
uen Mun, Hong Kong	
h an, Mei Kuen antau Island, Hong Kong	
apapostolou, Emmanoui ondon, United Kingdom	
lundy, Tom outhwater, United Kingdom	
IcNaughton, Daniel	
arringdon, United Kingdom Jong, Kin Yan	
owloon, Hong Kong	
o, Ming Chung William ennedy Town, Hong Kong	
emister, Adam Nicholas ondon, United Kingdom	
Jard, Neil Christopher	
rowborough, United Kingdom uica, Adrian	
ondon, United Kingdom rif, Muhammad	
ondon, United Kingdom	
oronaios, Georgios arrow, United Kingdom	
mith, Jocelyn ristol, United Kingdom	
lather, David George	
eading, United Kingdom rooks, Ben	
ondon, United Kingdom	
lasera, Tomas ardiff United Kingdom	

Cardiff, United Kingdom

Elliot, Mark	
London, Un Darbha, Ha	ited Kingdom
	nited Kingdom
Zhu, Junji	ited Kingdom
Axelrod, Jol	
	Inited Kingdom
Watabiki, D Wolverham	avid Shiro pton, United Kingdom
Tiemann, Is	
	ited Kingdom ua Stephen
Sheffield, U	nited Kingdom
-	ı, Aleksandra Ann United Kingdom
Al-Mukhta	; Feras
Abela, Clyd	ted Kingdom
	ited Kingdom
	niguez, Christian Ala ed Kingdom
Chan, Hei H	
Sha Tin, Ho	
	ou, Demetrios ited Kingdom
Perniola, Ro	
Leung, Chiu	ited Kingdom Kit Kevin
Kowloon, H	ong Kong
Coleman, A London, Un	lexandra ited Kingdom
Mory, Luca	
Toulouse, F Denev, Ned	
	ted Kingdom
Kinnell, Day Swadlincot	vid e, United Kingdom
Hopkins, Ti	mothy James
	under-Lyme, United Kingdom 1, James Thoma
	r, United Kingdom
Brownstein	n , David n, United Kingdom
Lesniewska	
	nited Kingdom
Lewis, Edw Ludlow, Uni	ard ited Kingdom
Balukiewic	z, Joanna
	nited Kingdom omez, Javier Antoni
Arnold, Unit	ted Kingdom
Saxena, An Nottinghan	uraag 1, United Kingdom
Cui, Jia Mich	nelle
Nottinghan Choi, Hin Fa	ı, United Kingdom i Raymond
	i, Hong Kong
Owen, Jeren Nottinghan	ny David 1, United Kingdom
Chan, Chun	
	arden, Hong Kong
McSoley, Pa Stanford-le	-Hope, United Kingdom
Malhotra, S	
Smith, Carl	d, United Kingdom
Langdon Hi	lls, United Kingdom
Sreekeesso New Grove,	
Williams, N	lichael Jon
Brighton, U	nited Kingdom (it
Tsuen Wan,	
Jankowski, Glasgow U	Slawomir nited Kingdom
Mavridis, L	
London, Un	ited Kingdom
Chen, Tiano Shanghai, C	

Gilmour-White, William Graham Honiton, United Kingdom Glensman, Kate Jones, Lyudmila St Albans, United Kingdom Lau, Alfred Wui Chun Hong Kong, Hong Kong Marchisotta, Antonio London, United Kingdom Mujtuba, Anzar Brentwood, United Kingdom Bowman, Geoffrey David Rochester, United Kingdom Alo, Babafunsho Milton Keynes, United Kingdom Rabadia, Raj London, United Kingdom ASSOCIATE Hall, Andrew Beckenham, United Kingdom Fox, Christopher Daniel Mold, United Kingdom Hickman, Mark Birmingham, United Kingdom Catchpole, Mark Dartford, United Kingdom Bull, Paul James Cardiff, United Kingdom Jones, Nathan Loughton, United Kingdom Woodhead, Adrian Huddersfield, United Kingdom Watson, David Matthew Leeds, United Kingdom Muralidharan, Vishnu Haywards Heath, United Kingdom Coldrey, Tom Exeter, United Kingdom Sapina-Grau, Antoni London, United Kingdom **Keen, George** Welling, United Kingdom **Ogunlade, Daniel** Dulwich, United Kingdom Atkins, Christopher Bicester, United Kingdom Wilkinson, Ross Alan Welwyn Garden City, United Kingdom Headley, Luke Warwickshire, United Kingdom Ruiz Blanco, David Felix Manchester, United Kingdom LICENTIATE Finestone, Harry Reilly, Ronan London, United Kingdom Sanieev. Jevatharsine Wheeler, Chris Manchester, United Kingdom Pool, James Bristol, United Kingdom Coyle, Kieron William Cardiff, United Kingdom Jayes, Lauryn Nottingham, United Kingdom Mulvanny, Sara Manchester, United Kingdom Natarajan Theyagarajan, Nitharshan London, United Kingdom Yehezkel, Rachel Leeds, United Kingdom Leary, James Guildford, United Kingdom Brown, Michael Allan

Dunmow, United Kingdom

Stratford-Upon-Avon, United Kingdom

Anton-Barro, Miguel

"Insanity is doing the same thing over and over again and expecting different results." Einstein

14 March 2019 www.cibsejournal.com www.cibsejournal.com March 2019 15

Shanghai, China

Global reform

Following reviews of construction in high-rise residential buildings, the construction sector is facing major change with calls for a significant update of regulations. Hywel Davies reports

n response to the outcry over failings in tall buildings, government is set to introduce a Building Commissioner with responsibility for auditing workers in the industry. There will be greater protection for homeowners and owners' organisations. to help them obtain compensation if builders or engineers have been negligent. The response has been described as the 'biggest shake-up in building and construction laws in our... history.'

An independent report found that the 'nature and extent of the problems [in the industry] are significant and concerning', and 'likely to undermine public trust in the health and safety of buildings if they are not addressed in a comprehensive manner'.

It calls for registration schemes for builders, surveyors, architects, engineers, designers, and building inspectors and new mechanisms for training and licensing. The government proposals are intended to ensure that 'people who work in the building and construction industry' will have 'to take responsibility for their work.'

The proposals are likely to mean 'requiring designers to sign off on their designs, and builders to build their buildings in line with those designs.' The proposed commissioner would have responsibility for enforcing the licensing scheme.

Other measures will give builders less control over the certifiers responsible for approving their work, and a bond defects scheme will make it easier for homeowners to remedy defective work.

The proposals are part of the state government of New South Wales' response to a major review commissioned in August 2017 - and published in April 2018 - by the Building Ministers' Forum, a collective of Australian state and territory ministers. Its report was the culmination of six months' investigation by the chancellor of Western Sydney University, Peter Shergold, and lawyer Bronwyn Weir, who has many years' experience of building regulations. Further responses will be delivered across Australia in the coming weeks.

The report was commissioned in reaction to a series of problems with tall residential buildings in Australia, including a fire in the Lacrosse Building in Melbourne. Since it was published, there have been highly publicised structural failures in the 36-storey Opal Tower, at Sydney

"Issues facing engineers and their associations across the world are very similar"

Olympic Park. Significant cracks that developed in December 2018 have been attributed to design and construction failures. In early February, there was another high-rise fire in Melbourne, in a block of flats in Spencer Street.

Six days later, NSW fair trading minister Matt Kean released his response to the Shergold Weir report into compliance and enforcement in the Australian building industry. When you buy a property in NSW, you have every right to expect that [it] is safe, structurally sound, and free from major defects. And, unfortunately, that is not always the case,' said Kean.

He announced the state government would accept the 'vast majority' of the 24 recommendations in the Shergold Weir report, published just three weeks before Building a Safer Future, Dame Judith Hackitt's review of building regulations and fire safety in England.

The two reports review building regulations in their respective countries and recommend reform. They are quite different, reflecting their respective terms of reference and context, and considerable

differences between building regulations in the eight Australian jurisdictions and in England. However, the reports' observations on building practices, culture and regulatory oversight are remarkably similar, and there is scope to learn from each other. Similarities include:

Support for performance/outcomes-based building **standards**. Both reports conclude that standards for building construction must allow innovation and use of new and emerging products and building methods. They also acknowledge that a performance- or outcomesbased model requires high levels of competency and transparency, which are lacking in current practices.

Architects and designers should be obliged to produce designs that show a proposed building will meet required safety standards. They should supply full evidence that relevant safety considerations have been addressed and managed, and that the building will comply with all relevant legislative requirements.

The role of building surveyors or control officers in both jurisdictions, and the need to avoid conflicts of interest and clients choosing their enforcement officials. Australia has four models across its eight jurisdictions but, where owners or builders can engage a private surveyor or local government to issue approvals, the process to be followed is essentially the same. There are similarities between Dame Judith's model and those in Western Australia, South Australia and, to some extent, Tasmania.

Greater control over changes to approved designs. In particular, over changes to design in 'design and construction' models and during 'value engineering', with tighter control and full records of changes, which need to be enforced effectively. Linked to this is the need for:

Record keeping using digital records, to deliver and maintain key building design and safety information using new and emerging technologies (such as BIM) to give owners and safety managers access to all relevant information for the life of the building.

Competency of building practitioners, with both reports recommending improved competency of key practitioners so that performance/outcomes-based design and construction is delivered by those who demonstrate and evidence adequate qualifications and skills. The Shergold Weir report recommends a harmonised registration scheme for all eight Australian jurisdictions and compulsory professional development.

Comprehensive regulatory enforcement powers supported by meaningful penalties, to reward a compliance-based culture, with high-level coordination of relevant regulators - the 'joint competent authority' in Dame Judith's scheme.

Both reports also address the role of fire authorities, maintenance of fire-safety systems during occupation, and building product safety and quality assurance.

The issues facing governments across the world, as well as professional engineers, are very similar as they strive to rebuild trust and confidence in their building and construction sectors. CIBSE is a global engineering body with members in the UK and Australia, so there is plenty of scope to work together to respond to the challenges our sector faces. While the exact destination may vary from state to state, the direction of travel is clear: regulatory change is coming, and we need to embrace it.

"If you always do what you've always done, you'll always get what you've always got." Ford

> Tamlite Lighting... **Worth Another Look**

DR HYWEL DAVIES www.cibse.org

Shaping a low carbon future, together

Work by the government on Building Regulations and the future of heat offers many opportunities to be involved with CIBSE activities, says the **Institution's Julie Godefrov**

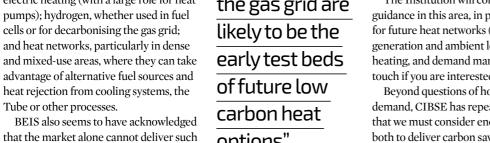
n the past 10 years, the UK has achieved significant carbon savings through the decarbonisation of the electricity grid. Decarbonising heat is now acknowledged as one of the biggest challenges if the UK is to continue on its trajectory and meet its carbon-reduction targets.

The Department for Business, Energy and Industrial Strategy (BEIS) is exploring how this may happen, and has published its analysis of technology and policy options.

Much aligns with recommendations by CIBSE and others: there is currently no clear, single contender to replace the wide coverage and convenience of gas heating, and a low carbon heating future is likely to require a mix of options. These include electric heating (with a large role for heat pumps); hydrogen, whether used in fuel cells or for decarbonising the gas grid; and heat networks, particularly in dense and mixed-use areas, where they can take advantage of alternative fuel sources and heat rejection from cooling systems, the

that the market alone cannot deliver such substantial changes, capital investments

"Buildings that are not connected to the gas grid are likely to be the early test beds of future low carbon heat options"


and infrastructure upgrades, while still keeping energy affordable and protecting consumers: a mix of policy requirements and incentives will be required. The department also stresses the importance of increasing consumer awareness. While this is true, there are probably other key drivers that have more of an influence on the heating choices made by consumers. These include convenience, affordability, advice from suppliers and overcoming the caution of installers towards new products. New regulations will be needed to provide the catalyst.

Buildings that are not connected to the gas grid are likely to be the early test beds of future low carbon heat options - an approach CIBSE has long advocated.

The Institution will continue to develop guidance in this area, in particular for future heat networks (4th and 5th generation and ambient loops), electric heating, and demand management. Get in touch if you are interested in taking part.

Beyond questions of how to meet demand, CIBSE has repeatedly stressed that we must consider energy efficiency, both to deliver carbon savings and to increase the feasibility of low-carbon

The Trent Basin housing development in

supply options. Simply put, without demand reduction it is unlikely we will have enough capacity to supply heat entirely from low carbon sources, particularly when huge increases in electricity demand are expected in the transport sector from electric vehicles.

Collaboration on Building Regulations -CIBSE and the UK Green Building Council

After our detailed position paper on recommendations for changes to Building Regulations Part L and F, CIBSE has worked with the UK Green Building Council to produce a common summary statement. The aim of this is to send a consistent message to government and influence the upcoming review of these parts of the Building Regulations. Key elements include:

- Establishing a clear trajectory to 'zero carbon', so the industry can start adopting stretching targets and developing cost-effective solutions
- Exploring how to gradually introduce requirements on operational energy and carbon, rather than design and as-built requirements alone. As a very first step, this should start with gathering data on operational performance
- Better addressing indoor air quality and overheating. Both papers can be found at bit.ly/CJMar19pos

Environmental regulations

CIBSE has responded to consultations on environmental regulations - an area likely to be most affected by Brexit:

- Department for Environment, Food and Rural Affairs consultation on monitoring of environmental indicators: we broadly support this, and have advocated a more robust framework, including a better culture of assessing policy effectiveness, and reporting against science-based objectives (for example World Health Organization air quality guidelines), not just against the government's own targets
- Parliamentary inquiry on the Environment Bill, which sets the framework for environmental regulations and enforcement post-Brexit: we support a number of proposals; however, we also have serious concerns, including the independence of the future body that will hold government to account.

Current consultations:

- Air pollution control programme: respond to CIBSE by 4 March
- We are working with the Royal Academy of Engineering to inform the UK's post-Brexit immigration strategy. Let us know if you would like to inform our work – for example, if you have assessed how skills and/or salary criteria may affect your business.
- All can be found at cibse.org/news-and-policy/consulta

"If not us, who? If not now, when?" - JFK

Tamlite Lighting... **Worth Another Look**

...high performance, quality luminaires for your project requirements.

Try us on your next lighting design. visit tamlite.co.uk/butterfly

JULIE GODEFROY

18 March 2019 www.cibsejournal.com www.cibseiournal.com March 2019 19 (101-1,000 employees) Winner: Cundall

as comprehensive and convincing, with the consultancy having its own sustainability roadmap and a stated intention to go beyond the 'business as usual' agenda. Importantly, the consultancy also encourages its clients to exceed standard practice on sustainability.

Sponsored by ABB

>>

Sponsored by Lochinvar

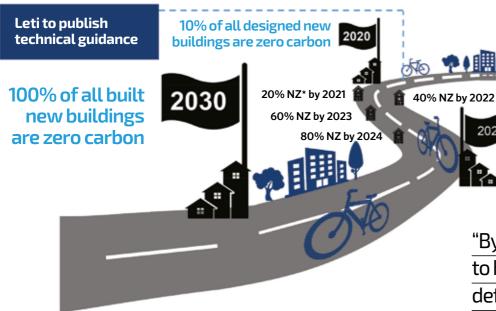
create the best team possible.

Building Performance Consultancy (over 1,000 employees)

supply chain in an innovative way that is more likely

to deliver longer-term impact.

Sponsored by Panasonic


Winner: BuroHappold Engineering

The judges commended the group's commitment to addressing building performance and ensuring that understanding is reflected in what is delivered on site. They acknowledged how BuroHappold is engaging with the key topics of healthy, safe buildings, and delivering ones that are resilient to a changing climate and that have less negative impact on the environment in the future.

Sponsored by Tamlite Lighting

Leti's pathway to zero carbon in 100% of all new buildings by 2030

*nearly zero (NZ)

>> are a challenge to developing low carbon and low-cost heating and hot water systems. So this group will explore whether the focus should be on reducing heat demand rather than improving supply efficiency, and how close we are to satisfactory building fabric for individual buildings, or clusters of buildings, to run on internally generated heat gains.

Demand response and energy storage (DRES)

This will establish whether flexibility in when buildings and occupants use energy

LETI AND ITS IMPACT

Leti was established to support the transition of London's buildings to net zero carbon. Its focus was initially to influence energy policy in London, including the draft London Plan and the London Environment Strategy. Although still working with the GLA, Leti's focus has shifted to offering solutions and approaches to support the zero carbon transition. Many of its recommendations have been included in emerging London policy and energy assessment guidance:

Energy-use disclosure: A 'be seen' stage has been added to the energy hierarchy that cements monitoring, verifying and reporting into the London Plan.

Carbon factors: The draft London Plan recognises that Building Regulations use outdated carbon $emission \, factors. \, The \, GLA \, energy \, assessment \, guidance \, recommends \, that \, SAP10 \, carbon \, factors \, (for \, common \, factors) \, and \, common \, factors \, (for \, common \, factors) \, and \, common \, factors \, (for \, common \, factors) \, and \, common \, factors) \, and \, common \, factors \, (for \, common \, factors) \, and \,$ example, 233gCO₂/kWh for electricity) are used from January 2019.

Whole life-cycle carbon: Referable schemes to calculate whole life-cycle carbon emissions through a nationally recognised assessment, and to demonstrate actions taken to reduce life-cycle carbon.

Enhanced fabric and systems: A 10% reduction in carbon emissions for residential development, and a 15% reduction for non-residential, to be achieved by using efficient building fabric and systems. Increased transparency of design: Reporting on total energy demand and glazing ratio. Fabric Energy Efficiency Standard (FEES) to be reported for residential.

Overheating: CIBSE TM52 or TM59 criteria are met using the DSY1 (2020's 50th percentile) weather file, and that sensitivity analysis is carried out for DSY2 and DSY3 (2020's 50th percentile). An overheating checklist must be completed for residential developments

Future-proofed to achieve zero carbon onsite: All developments and district heating systems to be future-proofed to achieve zero carbon onsite by 2050.

Calculation of unregulated energy consumption: Major development proposals should calculate and minimise carbon emissions from any other part of the development, including plant or equipment, that are not covered by Building Regulations.

Cost to occupant: To be reported if heating and hot water are to be provided by heat pumps Onsite renewable: To be maximised, regardless of whether 35% carbon-emission reduction has

Demand-side response: Plans for demand-side response and investigations into energy storage are required.

"By 2020, we need to have developed a definition for 'operating at net zero', with defined, measurable targets"

100% of all

zero carbon

designed new buildings are

can reduce carbon emissions. The focus will be on developing guidance on how DRES can reduce the carbon footprint of buildings, and how local authorities can assess whether a building has been designed to maximise energy-use flexibility.

The group will also explore how DRES in a development could reduce or delay the need for grid upgrades, and its wider impact on renewables.

Leti Declaration

To achieve the Leti goals, it is crucial that industry leads by example and builds upon the changes in the draft London Plan to deliver operational net zero carbon buildings. The Leti Declaration tool has been developed to help achieve this, with a strong focus on nudging design teams to think about how their design proposals would perform in operation.

The focus is now to refine, develop and test the Leti Declaration to disclose energy data at the design stage and compare this with measured in-use performance data, by developing functionality to link to postoccupancy monitoring data.

To avert disastrous, irreversible climate change, we only have one year to develop our first version of a roadmap for achieving operational net zero carbon buildings. For this roadmap to be robust, we need as many people as possible to become involved. Sign up at www.Leti.london/2019-workstreams

CLARA BAGENAL GEORGE is a senior engineer at Elementa Consulting

"Insanity is doing the same thing over and over again and expecting different results."

- Einstein

Tamlite Lighting... Worth Another Look

...high performance, quality luminaires for your project requirements.

Try us on your next lighting design. visit tamlite.co.uk/butterfly

Battery storage

Advances in battery technology and steep falls in prices for PVs and storage is making smart energy grids an attractive commercial proposition. Aecom's first cost model of the year assesses the viability of batteries across a number of scenarios

he advance in battery storage technology means the role it can play in developing a smarter energy system is becoming a commercial reality. Lithiumion batteries have fallen in price, so storage has become an increasingly attractive method of reducing energy bills and dependence on the National Grid. Coupled with a dramatic fall in the price of solar photovoltaic (PV) cells, there is a promising business case to be made for the large-scale employment of both technologies in the domestic and commercial market.

State of the market

Since 2010, there have been more than 700,000 domestic solar PV installations in the UK, resulting in a solar PV capacity of 9GW – representing a huge opportunity for battery storage to harness this energy. In the

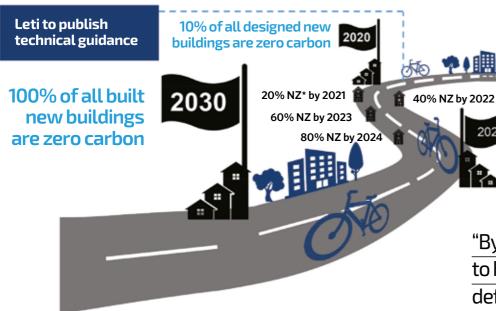
same period, there has been a significant fall in the price of lithiumion battery storage, from £770/kWh to £180/kWh. This is plateauing, however, and Tesla and Panasonic have recently revised their prices upwards by 12% for their domestic and small business Powerwall product. Despite this, when the relative warranties and efficiency degradation rates are taken into account, products such as Tesla's offer a cost-effective solution to a consumer with sufficient load demands.

While the rest of the domestic battery-storage market catches up with the demand created, the market is not necessarily moving in the right direction. If battery storage is to be employed effectively in communities - which contain a mix of residential, retail and commercial space with varying loads – it needs to be done in partnership with the distribution network operator (DNO).

A great example is Project SCENe's Trent Basin development, which is home to Europe's largest community battery-storage system, with a capacity of 2.1MWh. Sized to be future-proof, this system aggregates demand and supply, thereby offering a far more efficient use of energy while generating a revenue stream through a firm frequency response (FFR) contract signed with the National Grid.

This concept of community energy storage gets particularly exciting when combined, potentially, with electric vehicles (EVs). Researchers and the industry are now grappling with the challenge of integrating EVs into community battery-storage systems with two-way charging points, which would allow energy to be pooled between building demands and the connected vehicles (naturally, stationary for 95% of the time). In the near future, we could see EV owners being paid when they connect to the Grid and agree to controlled charging.

The business case


Electricity consumption can be a significant cost to a commercial or industrial consumer. Battery storage represents an opportunity to not only reduce this, but also generate a return on the investment. Judging the business case for investing in battery-storage systems requires an

understanding of the relevant agreements in place with the Grid that ensure revenue streams back to the operator.

The initial capital investment made in a battery-storage system includes not only the battery, but the connection costs associated with the DNO, the necessary inverter, transformer, switchgear and contract formation. While there is sizeable initial capital expenditure (capex), the operator has to consider the coinciding operating

Cost data: battery storage. three scenarios: TNUoS/DUoS income and FFR and Econ 7		Base p	osition		Base	e position +	five years	FFR	Base position + five years FFR + Economy 7				
	Year	Year	Year	Year	Year 2019	Year	Year 2029-38	Year 2039-48	Year 2019	Year	Year 2029-38	Year	
	2019 1	2020-28	2029-38 11-20	2039-48	2019	2020-28	11-20	2039-48	2019	2020-28	11-20	2039-48	
Capital expenditure (capex)	'	2-10	11-20	21-30	'	2-10	11-20	21-30	'	2-10	II-20	21-30	
Estimated installation of 1.8MW system	900,000				900,000				900,000				
DNO network connection costs	45,000				45,000				45,000				
LV inverter/transformer/ switchgear	60,000				60,000				60,000				
Contract formation	40,000				40,000				40,000				
Operational expenditure (opex)													
Annual maintenance		27,300	44,000	65,200		27,300	44,000	65,200		28,600	46,200	68,300	
Replacement cycle			1,320,900	684,900			1,320,900	684,900			1,320,900	684,900	
Additional insurance premiums		86,100	110,200	127,900		86,100	110,200	127,900		109,519	110,200	127,900	
Physical maintenance		500	5,800	7,400		4,000	6,200	7,900		7,500	10,500	13,500	
Net cash outflows	1,045,000	113,900	1,480,900	885,400	1,045,000	117,400	1,481,300	885,900	1,045,000	122,200	1,487,800	894,600	
Income													
TNUoS		618,100	1,144,700	1,955,300		618,100	1,144,700	1,955,300		618,100	1,144,700	1,955,300	
DUoS		240,100	444,600	759,300		240,100	444,600	759,300		240,100	444,600	759,300	
FFR						282,900	0	0		282,900	0	0	
Capacity market levy		49,000	68,800	88,000		49,000	68,800	88,000		49,000	68,800	88,000	
Economy 7 opportunity										145,900	271,400	463,500	
		907,200	1,658,000	2,802,600		1,190,100	1,658,100	2,802,600		1,336,000	1,929,500	3,266,100	
Assumed average efficiency (fluctuates due to replacement cycle)		89%	81%	72%		89%	81%	72%		89%	81%	72%	
Net cash inflows (after efficiency is accounted for)	0	795,800	1,342,100	1,999,500	0	1,065,800	1,342,100	1,999,500	0	1,179,900	1,560,600	2,330,100	
Net cash flows	-1,045,000	681,900	-138,800	1,114,100	-1,045,000	948,400	-139,200	1,113,600	-1,045,000	1,057,700	73,000	1,435,700	
Present value of income	834,885				1,058,502				1,378,918				
Initial capital cost	-1,045,000				-1,045,000				-1,045,000				
Net present value	-210,115				13,502				333,918				
Percentage value of return on investment	-20%				1%				32%				

Figure 1: Inflows and outflows calculated against an initial investment in three scenarios, and the final return ger

Leti's pathway to zero carbon in 100% of all new buildings

*nearly zero (NZ)

>> are a challenge to developing low carbon and low-cost heating and hot water systems. So this group will explore whether the focus should be on reducing heat demand rather than improving supply efficiency, and how close we are to satisfactory building fabric for individual buildings, or clusters of buildings, to run on internally generated heat gains.

Demand response and energy storage (DRES)

This will establish whether flexibility in when buildings and occupants use energy

LETI AND ITS IMPACT

Leti was established to support the transition of London's buildings to net zero carbon. Its focus was initially to influence energy policy in London, including the draft London Plan and the London Environment Strategy. Although still working with the GLA, Leti's focus has shifted to offering solutions and approaches to support the zero carbon transition. Many of its recommendations have been included in emerging London policy and energy assessment guidance:

Energy-use disclosure: A 'be seen' stage has been added to the energy hierarchy that cements monitoring, verifying and reporting into the London Plan.

Carbon factors: The draft London Plan recognises that Building Regulations use outdated carbonemission factors. The GLA energy assessment guidance recommends that SAP10 carbon factors (for example, 233gCO₂/kWh for electricity) are used from January 2019.

Whole life-cycle carbon: Referable schemes to calculate whole life-cycle carbon emissions through a nationally recognised assessment, and to demonstrate actions taken to reduce life-cycle carbon.

Enhanced fabric and systems: A 10% reduction in carbon emissions for residential development, and a 15% reduction for non-residential, to be achieved by using efficient building fabric and systems. Increased transparency of design: Reporting on total energy demand and glazing ratio. Fabric Energy Efficiency Standard (FEES) to be reported for residential.

Overheating: CIBSE TM52 or TM59 criteria are met using the DSY1 (2020's 50th percentile) weather file, and that sensitivity analysis is carried out for DSY2 and DSY3 (2020's 50th percentile). An overheating checklist must be completed for residential developments

Future-proofed to achieve zero carbon onsite: All developments and district heating systems to be future-proofed to achieve zero carbon onsite by 2050.

Calculation of unregulated energy consumption: Major development proposals should calculate and minimise carbon emissions from any other part of the development, including plant or equipment, that are not covered by Building Regulations.

Cost to occupant: To be reported if heating and hot water are to be provided by heat pumps. Onsite renewable: To be maximised, regardless of whether 35% carbon-emission reduction has

Demand-side response: Plans for demand-side response and investigations into energy storage are required.

"By 2020, we need to have developed a definition for 'operating at net zero', with defined, measurable targets"

100% of all

zero carbon

designed new buildings are

can reduce carbon emissions. The focus will be on developing guidance on how DRES can reduce the carbon footprint of buildings, and how local authorities can assess whether a building has been designed to maximise energy-use flexibility.

The group will also explore how DRES in a development could reduce or delay the need for grid upgrades, and its wider impact on renewables.

Leti Declaration

To achieve the Leti goals, it is crucial that industry leads by example and builds upon the changes in the draft London Plan to deliver operational net zero carbon buildings. The Leti Declaration tool has been developed to help achieve this, with a strong focus on nudging design teams to think about how their design proposals would perform in operation.

The focus is now to refine, develop and test the Leti Declaration to disclose energy data at the design stage and compare this with measured in-use performance data, by developing functionality to link to postoccupancy monitoring data.

To avert disastrous, irreversible climate change, we only have one year to develop our first version of a roadmap for achieving operational net zero carbon buildings. For this roadmap to be robust, we need as many people as possible to become involved. Sign up at www.Leti.london/2019-workstreams

CLARA BAGENAL GEORGE is a senior engineer at Elementa Consulting

"If you always do what you've always done, you'll always get what you've always got."

Ford

Tamlite Lighting... Worth Another Look

...high performance, quality luminaires for your project requirements.

Try us on your next lighting design. visit tamlite.co.uk/butterfly

Battery storage

Advances in battery technology and steep falls in prices for PVs and storage is making smart energy grids an attractive commercial proposition. Aecom's first cost model of the year assesses the viability of batteries across a number of scenarios

he advance in battery storage technology means the role it can play in developing a smarter energy system is becoming a commercial reality. Lithiumion batteries have fallen in price, so storage has become an increasingly attractive method of reducing energy bills and dependence on the National Grid. Coupled with a dramatic fall in the price of solar photovoltaic (PV) cells, there is a promising business case to be made for the large-scale employment of both technologies in the domestic and commercial market.

State of the market

Since 2010, there have been more than 700,000 domestic solar PV installations in the UK, resulting in a solar PV capacity of 9GW – representing a huge opportunity for battery storage to harness this energy. In the

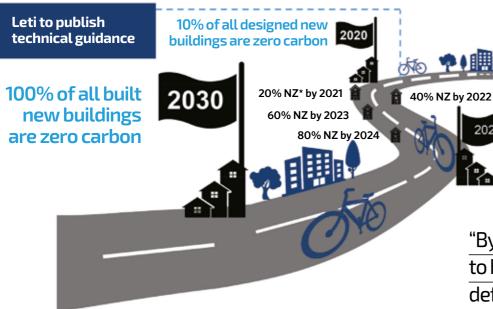
same period, there has been a significant fall in the price of lithiumion battery storage, from £770/kWh to £180/kWh. This is plateauing, however, and Tesla and Panasonic have recently revised their prices upwards by 12% for their domestic and small business Powerwall product. Despite this, when the relative warranties and efficiency degradation rates are taken into account, products such as Tesla's offer a cost-effective solution to a consumer with sufficient load demands.

While the rest of the domestic battery-storage market catches up with the demand created, the market is not necessarily moving in the right direction. If battery storage is to be employed effectively in communities - which contain a mix of residential, retail and commercial space with varying loads – it needs to be done in partnership with the distribution network operator (DNO).

A great example is Project SCENe's Trent Basin development, which is home to Europe's largest community battery-storage system, with a capacity of 2.1MWh. Sized to be future-proof, this system aggregates demand and supply, thereby offering a far more efficient use of energy while generating a revenue stream through a firm frequency response (FFR) contract signed with the National Grid.

This concept of community energy storage gets particularly exciting when combined, potentially, with electric vehicles (EVs). Researchers and the industry are now grappling with the challenge of integrating EVs into community battery-storage systems with two-way charging points, which would allow energy to be pooled between building demands and the connected vehicles (naturally, stationary for 95% of the time). In the near future, we could see EV owners being paid when they connect to the Grid and agree to controlled charging.

The business case


Electricity consumption can be a significant cost to a commercial or industrial consumer. Battery storage represents an opportunity to not only reduce this, but also generate a return on the investment. Judging the business case for investing in battery-storage systems requires an

understanding of the relevant agreements in place with the Grid that ensure revenue streams back to the operator.

The initial capital investment made in a battery-storage system includes not only the battery, but the connection costs associated with the DNO, the necessary inverter, transformer, switchgear and contract formation. While there is sizeable initial capital expenditure (capex), the operator has to consider the coinciding operating

Cost data: battery storage. three scenarios: TNUoS/DUoS income and FFR and Econ 7		Base p	osition		Base	e position +	five years	FFR	Base position + five years FFR + Economy 7				
	Year	Year	Year	Year	Year 2019	Year	Year 2029-38	Year 2039-48	Year 2019	Year	Year 2029-38	Year	
	2019 1	2020-28	2029-38 11-20	2039-48	2019	2020-28	11-20	2039-48	2019	2020-28	11-20	2039-48	
Capital expenditure (capex)	'	2-10	11-20	21-30	'	2-10	11-20	21-30	'	2-10	II-20	21-30	
Estimated installation of 1.8MW system	900,000				900,000				900,000				
DNO network connection costs	45,000				45,000				45,000				
LV inverter/transformer/ switchgear	60,000				60,000				60,000				
Contract formation	40,000				40,000				40,000				
Operational expenditure (opex)													
Annual maintenance		27,300	44,000	65,200		27,300	44,000	65,200		28,600	46,200	68,300	
Replacement cycle			1,320,900	684,900			1,320,900	684,900			1,320,900	684,900	
Additional insurance premiums		86,100	110,200	127,900		86,100	110,200	127,900		109,519	110,200	127,900	
Physical maintenance		500	5,800	7,400		4,000	6,200	7,900		7,500	10,500	13,500	
Net cash outflows	1,045,000	113,900	1,480,900	885,400	1,045,000	117,400	1,481,300	885,900	1,045,000	122,200	1,487,800	894,600	
Income													
TNUoS		618,100	1,144,700	1,955,300		618,100	1,144,700	1,955,300		618,100	1,144,700	1,955,300	
DUoS		240,100	444,600	759,300		240,100	444,600	759,300		240,100	444,600	759,300	
FFR						282,900	0	0		282,900	0	0	
Capacity market levy		49,000	68,800	88,000		49,000	68,800	88,000		49,000	68,800	88,000	
Economy 7 opportunity										145,900	271,400	463,500	
		907,200	1,658,000	2,802,600		1,190,100	1,658,100	2,802,600		1,336,000	1,929,500	3,266,100	
Assumed average efficiency (fluctuates due to replacement cycle)		89%	81%	72%		89%	81%	72%		89%	81%	72%	
Net cash inflows (after efficiency is accounted for)	0	795,800	1,342,100	1,999,500	0	1,065,800	1,342,100	1,999,500	0	1,179,900	1,560,600	2,330,100	
Net cash flows	-1,045,000	681,900	-138,800	1,114,100	-1,045,000	948,400	-139,200	1,113,600	-1,045,000	1,057,700	73,000	1,435,700	
Present value of income	834,885				1,058,502				1,378,918				
Initial capital cost	-1,045,000				-1,045,000				-1,045,000				
Net present value	-210,115				13,502				333,918				
Percentage value of return on investment	-20%				1%				32%				

Figure 1: Inflows and outflows calculated against an initial investment in three scenarios, and the final return ger

Leti's pathway to zero carbon in 100% of all new buildings by 2030

*nearly zero (NZ)

>> are a challenge to developing low carbon and low-cost heating and hot water systems. So this group will explore whether the focus should be on reducing heat demand rather than improving supply efficiency, and how close we are to satisfactory building fabric for individual buildings, or clusters of buildings, to run on internally generated heat gains.

Demand response and energy storage (DRES)

This will establish whether flexibility in when buildings and occupants use energy

LETI AND ITS IMPACT

Leti was established to support the transition of London's buildings to net zero carbon. Its focus was initially to influence energy policy in London, including the draft London Plan and the London Environment Strategy. Although still working with the GLA, Leti's focus has shifted to offering solutions and approaches to support the zero carbon transition. Many of its recommendations have been included in emerging London policy and energy assessment guidance:

Energy-use disclosure: A 'be seen' stage has been added to the energy hierarchy that cements monitoring, verifying and reporting into the London Plan.

Carbon factors: The draft London Plan recognises that Building Regulations use outdated carbon $emission \, factors. \, The \, GLA \, energy \, assessment \, guidance \, recommends \, that \, SAP10 \, carbon \, factors \, (for \, common \, factors) \, and \, common \, factors \, (for \, common \, factors) \, and \, common \, factors \, (for \, common \, factors) \, and \, common \, factors) \, and \, common \, factors \, (for \, common \, factors) \, and \,$ example, 233gCO₂/kWh for electricity) are used from January 2019.

Whole life-cycle carbon: Referable schemes to calculate whole life-cycle carbon emissions through a nationally recognised assessment, and to demonstrate actions taken to reduce life-cycle carbon.

Enhanced fabric and systems: A 10% reduction in carbon emissions for residential development, and a 15% reduction for non-residential, to be achieved by using efficient building fabric and systems. Increased transparency of design: Reporting on total energy demand and glazing ratio. Fabric Energy Efficiency Standard (FEES) to be reported for residential.

Overheating: CIBSE TM52 or TM59 criteria are met using the DSY1 (2020's 50th percentile) weather file, and that sensitivity analysis is carried out for DSY2 and DSY3 (2020's 50th percentile). An overheating checklist must be completed for residential developments

Future-proofed to achieve zero carbon onsite: All developments and district heating systems to be future-proofed to achieve zero carbon onsite by 2050.

Calculation of unregulated energy consumption: Major development proposals should calculate and minimise carbon emissions from any other part of the development, including plant or equipment, that are not covered by Building Regulations.

Cost to occupant: To be reported if heating and hot water are to be provided by heat pumps. Onsite renewable: To be maximised, regardless of whether 35% carbon-emission reduction has

Demand-side response: Plans for demand-side response and investigations into energy storage are required.

"By 2020, we need to have developed a definition for 'operating at net zero', with defined, measurable targets"

100% of all

zero carbon

designed new buildings are

can reduce carbon emissions. The focus will be on developing guidance on how DRES can reduce the carbon footprint of buildings, and how local authorities can assess whether a building has been designed to maximise energy-use flexibility.

The group will also explore how DRES in a development could reduce or delay the need for grid upgrades, and its wider impact on renewables.

Leti Declaration

To achieve the Leti goals, it is crucial that industry leads by example and builds upon the changes in the draft London Plan to deliver operational net zero carbon buildings. The Leti Declaration tool has been developed to help achieve this, with a strong focus on nudging design teams to think about how their design proposals would perform in operation.

The focus is now to refine, develop and test the Leti Declaration to disclose energy data at the design stage and compare this with measured in-use performance data, by developing functionality to link to postoccupancy monitoring data.

To avert disastrous, irreversible climate change, we only have one year to develop our first version of a roadmap for achieving operational net zero carbon buildings. For this roadmap to be robust, we need as many people as possible to become involved. Sign up at www.Leti.london/2019-workstreams

CLARA BAGENAL GEORGE is a senior engineer at Elementa Consulting

"If not us, who? If not now, when?" - JFK

Tamlite Lighting... Worth Another Look

...high performance, quality luminaires for your project requirements.

Try us on your next lighting design. visit tamlite.co.uk/butterfly

Battery storage

Advances in battery technology and steep falls in prices for PVs and storage is making smart energy grids an attractive commercial proposition. Aecom's first cost model of the year assesses the viability of batteries across a number of scenarios

he advance in battery storage technology means the role it can play in developing a smarter energy system is becoming a commercial reality. Lithiumion batteries have fallen in price, so storage has become an increasingly attractive method of reducing energy bills and dependence on the National Grid. Coupled with a dramatic fall in the price of solar photovoltaic (PV) cells, there is a promising business case to be made for the large-scale employment of both technologies in the domestic and commercial market.

State of the market

Since 2010, there have been more than 700,000 domestic solar PV installations in the UK, resulting in a solar PV capacity of 9GW – representing a huge opportunity for battery storage to harness this energy. In the

same period, there has been a significant fall in the price of lithiumion battery storage, from £770/kWh to £180/kWh. This is plateauing, however, and Tesla and Panasonic have recently revised their prices upwards by 12% for their domestic and small business Powerwall product. Despite this, when the relative warranties and efficiency degradation rates are taken into account, products such as Tesla's offer a cost-effective solution to a consumer with sufficient load demands.

While the rest of the domestic battery-storage market catches up with the demand created, the market is not necessarily moving in the right direction. If battery storage is to be employed effectively in communities - which contain a mix of residential, retail and commercial space with varying loads – it needs to be done in partnership with the distribution network operator (DNO).

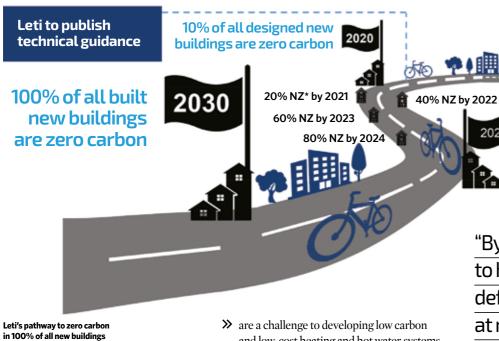
A great example is Project SCENe's Trent Basin development, which is home to Europe's largest community battery-storage system, with a capacity of 2.1MWh. Sized to be future-proof, this system aggregates demand and supply, thereby offering a far more efficient use of energy while generating a revenue stream through a firm frequency response (FFR) contract signed with the National Grid.

This concept of community energy storage gets particularly exciting when combined, potentially, with electric vehicles (EVs). Researchers and the industry are now grappling with the challenge of integrating EVs into community battery-storage systems with two-way charging points, which would allow energy to be pooled between building demands and the connected vehicles (naturally, stationary for 95% of the time). In the near future, we could see EV owners being paid when they connect to the Grid and agree to controlled charging.

The business case

Electricity consumption can be a significant cost to a commercial or industrial consumer. Battery storage represents an opportunity to not only reduce this, but also generate a return on the investment. Judging the business case for investing in battery-storage systems requires an

understanding of the relevant agreements in place with the Grid that ensure revenue streams back to the operator.


The initial capital investment made in a battery-storage system includes not only the battery, but the connection costs associated with the DNO, the necessary inverter, transformer, switchgear and contract formation. While there is sizeable initial capital expenditure (capex), the operator has to consider the coinciding operating

Cost data: battery storage. three scenarios: TNUoS/DUoS income and FFR and Econ 7		Base p	osition		Base	e position +	five years	FFR	Base position + five years FFR + Economy 7				
	Year	Year	Year	Year	Year 2019	Year	Year 2029-38	Year 2039-48	Year 2019	Year	Year 2029-38	Year	
	2019 1	2020-28	2029-38 11-20	2039-48	2019	2020-28	11-20	2039-48	2019	2020-28	11-20	2039-48	
Capital expenditure (capex)	'	2-10	11-20	21-30	'	2-10	11-20	21-30	'	2-10	II-20	21-30	
Estimated installation of 1.8MW system	900,000				900,000				900,000				
DNO network connection costs	45,000				45,000				45,000				
LV inverter/transformer/ switchgear	60,000				60,000				60,000				
Contract formation	40,000				40,000				40,000				
Operational expenditure (opex)													
Annual maintenance		27,300	44,000	65,200		27,300	44,000	65,200		28,600	46,200	68,300	
Replacement cycle			1,320,900	684,900			1,320,900	684,900			1,320,900	684,900	
Additional insurance premiums		86,100	110,200	127,900		86,100	110,200	127,900		109,519	110,200	127,900	
Physical maintenance		500	5,800	7,400		4,000	6,200	7,900		7,500	10,500	13,500	
Net cash outflows	1,045,000	113,900	1,480,900	885,400	1,045,000	117,400	1,481,300	885,900	1,045,000	122,200	1,487,800	894,600	
Income													
TNUoS		618,100	1,144,700	1,955,300		618,100	1,144,700	1,955,300		618,100	1,144,700	1,955,300	
DUoS		240,100	444,600	759,300		240,100	444,600	759,300		240,100	444,600	759,300	
FFR						282,900	0	0		282,900	0	0	
Capacity market levy		49,000	68,800	88,000		49,000	68,800	88,000		49,000	68,800	88,000	
Economy 7 opportunity										145,900	271,400	463,500	
		907,200	1,658,000	2,802,600		1,190,100	1,658,100	2,802,600		1,336,000	1,929,500	3,266,100	
Assumed average efficiency (fluctuates due to replacement cycle)		89%	81%	72%		89%	81%	72%		89%	81%	72%	
Net cash inflows (after efficiency is accounted for)	0	795,800	1,342,100	1,999,500	0	1,065,800	1,342,100	1,999,500	0	1,179,900	1,560,600	2,330,100	
Net cash flows	-1,045,000	681,900	-138,800	1,114,100	-1,045,000	948,400	-139,200	1,113,600	-1,045,000	1,057,700	73,000	1,435,700	
Present value of income	834,885				1,058,502				1,378,918				
Initial capital cost	-1,045,000				-1,045,000				-1,045,000				
Net present value	-210,115				13,502				333,918				
Percentage value of return on investment	-20%				1%				32%				

Figure 1: Inflows and outflows calculated against an initial investment in three scenarios, and the final return ger

by 2030

*nearly zero (NZ)

>> are a challenge to developing low carbon and low-cost heating and hot water systems. So this group will explore whether the focus should be on reducing heat demand rather than improving supply efficiency, and how close we are to satisfactory building fabric for individual buildings, or clusters of buildings, to run on internally generated heat gains.

Demand response and energy storage (DRES)

This will establish whether flexibility in when buildings and occupants use energy

LETI AND ITS IMPACT

Leti was established to support the transition of London's buildings to net zero carbon. Its focus was initially to influence energy policy in London, including the draft London Plan and the London Environment Strategy. Although still working with the GLA, Leti's focus has shifted to offering solutions and approaches to support the zero carbon transition. Many of its recommendations have been included in emerging London policy and energy assessment guidance:

Energy-use disclosure: A 'be seen' stage has been added to the energy hierarchy that cements monitoring, verifying and reporting into the London Plan.

Carbon factors: The draft London Plan recognises that Building Regulations use outdated carbonemission factors. The GLA energy assessment guidance recommends that SAP10 carbon factors (for example, 233gCO₂/kWh for electricity) are used from January 2019.

Whole life-cycle carbon: Referable schemes to calculate whole life-cycle carbon emissions through a nationally recognised assessment, and to demonstrate actions taken to reduce life-cycle carbon.

Enhanced fabric and systems: A 10% reduction in carbon emissions for residential development, and a 15% reduction for non-residential, to be achieved by using efficient building fabric and systems. **Increased transparency of design:** Reporting on total energy demand and glazing ratio. Fabric

Energy Efficiency Standard (FEES) to be reported for residential. Overheating: CIBSE TM52 or TM59 criteria are met using the DSY1 (2020's 50th percentile) weather file, and that sensitivity analysis is carried out for DSY2 and DSY3 (2020's 50th percentile).

An overheating checklist must be completed for residential developments. Future-proofed to achieve zero carbon onsite: All developments and district heating systems to be future-proofed to achieve zero carbon onsite by 2050.

Calculation of unregulated energy consumption: Major development proposals should calculate and minimise carbon emissions from any other part of the development, including plant or equipment, that are not covered by Building Regulations.

Cost to occupant: To be reported if heating and hot water are to be provided by heat pumps. Onsite renewable: To be maximised, regardless of whether 35% carbon-emission reduction has been met.

Demand-side response: Plans for demand-side response and investigations into energy storage are required.

LOGIK

Style meets high performance...

- Up to 130 lm/W
- Candela's <3000 m2
- Over 3m spacings, unparallel uniformity

Try us on your next lighting design. visit tamlite.co.uk/logik

Over 50 years Lighting for a Living

"By 2020, we need to have developed a definition for 'operating at net zero', with defined, measurable targets"

100% of all

designed new buildings are zero carbon

can reduce carbon emissions. The focus will be on developing guidance on how DRES can reduce the carbon footprint of buildings, and how local authorities can assess whether a building has been designed to maximise energy-use flexibility.

The group will also explore how DRES in a development could reduce or delay the need for grid upgrades, and its wider impact on renewables.

Leti Declaration

To achieve the Leti goals, it is crucial that industry leads by example and builds upon the changes in the draft London Plan to deliver operational net zero carbon buildings. The Leti Declaration tool has been developed to help achieve this, with a strong focus on nudging design teams to think about how their design proposals would perform in operation.

The focus is now to refine, develop and test the Leti Declaration to disclose energy data at the design stage and compare this with measured in-use performance data, by developing functionality to link to postoccupancy monitoring data.

To avert disastrous, irreversible climate change, we only have one year to develop our first version of a roadmap for achieving operational net zero carbon buildings. For this roadmap to be robust, we need as many people as possible to become involved. Sign up at www.Leti.london/2019-workstreams

■ CLARA BAGENAL GEORGE is a senior engineer at Elementa Consulting

encourages its clients to exceed standard practice

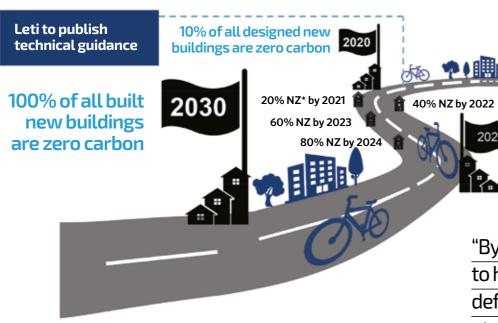
Lochim Collaborative Working Partnership Winner: Broadway Chambers - Woodford Heating and Energy This entry stood out for the judges because of the very clear and considered thought process behind the collaboration. The contractor team was chosen to match the client team in terms of personality and seniority. The judges said the project showed the success of considering personality traits and management styles to create the best team possible. Sponsored by Lochinvar **>>**

on sustainability. Sponsored by ABB

Building Performance Consultancy (over 1,000 employees)

Winner: BuroHappold Engineering

to deliver longer-term impact.


Sponsored by Panasonic

The judges commended the group's commitment to addressing building performance and ensuring that understanding is reflected in what is delivered on site. They acknowledged how BuroHappold is engaging with the key topics of healthy, safe buildings, and delivering ones that are resilient to a changing climate and that have less negative impact on the environment in the future.

Sponsored by Tamlite Lighting

» are a challenge to developing low carbon and low-cost heating and hot water systems. So this group will explore whether the focus should be on reducing heat demand rather than improving supply efficiency, and how close we are to satisfactory building fabric for individual buildings, or clusters of buildings, to run on internally generated heat gains.

Demand response and energy storage (DRES)

This will establish whether flexibility in when buildings and occupants use energy

LETI AND ITS IMPACT

Leti's pathway to zero carbon in 100% of all new buildings

*nearly zero (NZ)

Leti was established to support the transition of London's buildings to net zero carbon. Its focus was initially to influence energy policy in London, including the draft London Plan and the London Environment Strategy. Although still working with the GLA, Leti's focus has shifted to offering solutions and approaches to support the zero carbon transition. Many of its recommendations have been included in emerging London policy and energy assessment guidance:

Energy-use disclosure: A 'be seen' stage has been added to the energy hierarchy that cements monitoring, verifying and reporting into the London Plan.

Carbon factors: The draft London Plan recognises that Building Regulations use outdated carbonemission factors. The GLA energy assessment guidance recommends that SAP10 carbon factors (for example, 233gCO₂/kWh for electricity) are used from January 2019.

Whole life-cycle carbon: Referable schemes to calculate whole life-cycle carbon emissions through a nationally recognised assessment, and to demonstrate actions taken to reduce life-cycle carbon.

Enhanced fabric and systems: A 10% reduction in carbon emissions for residential development, and a 15% reduction for non-residential, to be achieved by using efficient building fabric and systems. Increased transparency of design: Reporting on total energy demand and glazing ratio. Fabric Energy Efficiency Standard (FEES) to be reported for residential.

Overheating: CIBSE TM52 or TM59 criteria are met using the DSY1 (2020's 50th percentile) weather file, and that sensitivity analysis is carried out for DSY2 and DSY3 (2020's 50th percentile). An overheating checklist must be completed for residential developments.

Future-proofed to achieve zero carbon onsite: All developments and district heating systems to be future-proofed to achieve zero carbon onsite by 2050.

Calculation of unregulated energy consumption: Major development proposals should calculate and minimise carbon emissions from any other part of the development, including plant or equipment, that are not covered by Building Regulations.

Cost to occupant: To be reported if heating and hot water are to be provided by heat pumps. Onsite renewable: To be maximised, regardless of whether 35% carbon-emission reduction has

Demand-side response: Plans for demand-side response and investigations into energy storage are required.

Cost model

Battery storage

Advances in battery technology and steep falls in prices for PVs and storage is making smart energy grids an attractive commercial proposition. Aecom's first cost model of the year assesses the viability of batteries across a number of scenarios

he advance in battery storage technology means the role it can play in developing a smarter energy system is becoming a commercial reality. Lithiumion batteries have fallen in price, so storage has become an increasingly attractive method of reducing energy bills and dependence on the National Grid. Coupled with a dramatic fall in the price of solar photovoltaic (PV) cells, there is a promising business case to be made for the large-scale employment of both technologies in the domestic and commercial market.

State of the market

Since 2010, there have been more than 700,000 domestic solar PV installations in the UK, resulting in a solar PV capacity of 9GW - representing a huge opportunity for battery storage to harness this energy. In the

same period, there has been a significant fall in the price of lithiumion battery storage, from £770/kWh to £180/kWh. This is plateauing, however, and Tesla and Panasonic have recently revised their prices upwards by 12% for their domestic and small business Powerwall product. Despite this, when the relative warranties and efficiency degradation rates are taken into account, products such as Tesla's offer a cost-effective solution to a consumer with sufficient load demands.

While the rest of the domestic battery-storage market catches up with the demand created, the market is not necessarily moving in the right direction. If battery storage is to be employed effectively in communities - which contain a mix of residential, retail and commercial space with varying loads – it needs to be done in partnership with the distribution network operator (DNO).

A great example is Project SCENe's Trent Basin development, which is home to Europe's largest community battery-storage system, with a capacity of 2.1MWh. Sized to be future-proof, this system aggregates demand and supply, thereby offering a far more efficient use of energy while generating a revenue stream through a firm frequency response (FFR) contract signed with the National Grid.

This concept of community energy storage gets particularly exciting when combined, potentially, with electric vehicles (EVs). Researchers and the industry are now grappling with the challenge of integrating EVs into community battery-storage systems with two-way charging points, which would allow energy to be pooled between building demands and the connected vehicles (naturally, stationary for 95% of the time). In the near future, we could see EV owners being paid when they connect to the Grid and agree to controlled charging.

The business case

Electricity consumption can be a significant cost to a commercial or industrial consumer. Battery storage represents an opportunity to not only reduce this, but also generate a return on the investment. Judging the business case for investing in battery-storage systems requires an

"By 2020, we need to have developed a definition for 'operating at net zero', with defined, measurable targets'

100% of all

designed new

buildings are zero carbon

can reduce carbon emissions. The focus will be on developing guidance on how DRES can reduce the carbon footprint of buildings, and how local authorities can assess whether a building has been designed to maximise energy-use flexibility.

The group will also explore how DRES in a development could reduce or delay the need for grid upgrades, and its wider impact on renewables.

Leti Declaration

To achieve the Leti goals, it is crucial that industry leads by example and builds upon the changes in the draft London Plan to deliver operational net zero carbon buildings. The Leti Declaration tool has been developed to help achieve this, with a strong focus on nudging design teams to think about how their design proposals would perform in operation.

The focus is now to refine, develop and test the Leti Declaration to disclose energy data at the design stage and compare this with measured in-use performance data, by developing functionality to link to postoccupancy monitoring data.

To avert disastrous, irreversible climate change, we only have one year to develop our first version of a roadmap for achieving operational net zero carbon buildings. For this roadmap to be robust, we need as many people as possible to become involved. Sign up at www.Leti.london/2019-workstreams

CLARA BAGENAL GEORGE is a senior engineer at Elementa Consulting

Battery storage

Advances in battery technology and steep falls in prices for PVs and storage is making smart energy grids an attractive commercial proposition. Aecom's first cost model of the year assesses the viability of batteries across a number of scenarios

he advance in battery storage technology means the role it can play in developing a smarter energy system is becoming a commercial reality. Lithiumion batteries have fallen in price, so storage has become an increasingly attractive method of reducing energy bills and dependence on the National Grid. Coupled with a dramatic fall in the price of solar photovoltaic (PV) cells, there is a promising business case to be made for the large-scale employment of both technologies in the domestic and commercial market.

State of the market

Since 2010, there have been more than 700,000 domestic solar PV installations in the UK, resulting in a solar PV capacity of 9GW – representing a huge opportunity for battery storage to harness this energy. In the

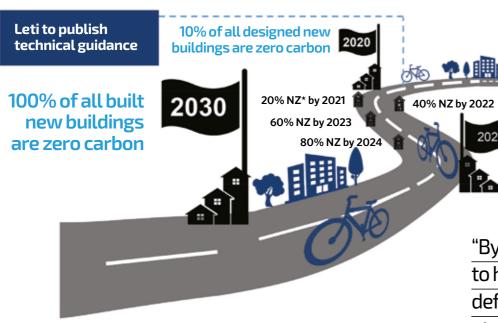
same period, there has been a significant fall in the price of lithiumion battery storage, from £770/kWh to £180/kWh. This is plateauing, however, and Tesla and Panasonic have recently revised their prices upwards by 12% for their domestic and small business Powerwall product. Despite this, when the relative warranties and efficiency degradation rates are taken into account, products such as Tesla's offer a cost-effective solution to a consumer with sufficient load demands.

While the rest of the domestic battery-storage market catches up with the demand created, the market is not necessarily moving in the right direction. If battery storage is to be employed effectively in communities - which contain a mix of residential, retail and commercial space with varying loads – it needs to be done in partnership with the distribution network operator (DNO).

A great example is Project SCENe's Trent Basin development, which is home to Europe's largest community battery-storage system, with a capacity of 2.1MWh. Sized to be future-proof, this system aggregates demand and supply, thereby offering a far more efficient use of energy while generating a revenue stream through a firm frequency response (FFR) contract signed with the National Grid.

This concept of community energy storage gets particularly exciting when combined, potentially, with electric vehicles (EVs). Researchers and the industry are now grappling with the challenge of integrating EVs into community battery-storage systems with two-way charging points, which would allow energy to be pooled between building demands and the connected vehicles (naturally, stationary for 95% of the time). In the near future, we could see EV owners being paid when they connect to the Grid and agree to controlled charging.

The business case


Electricity consumption can be a significant cost to a commercial or industrial consumer. Battery storage represents an opportunity to not only reduce this, but also generate a return on the investment. Judging the business case for investing in battery-storage systems requires an

understanding of the relevant agreements in place with the Grid that ensure revenue streams back to the operator.

The initial capital investment made in a battery-storage system includes not only the battery, but the connection costs associated with the DNO, the necessary inverter, transformer, switchgear and contract formation. While there is sizeable initial capital expenditure (capex), the operator has to consider the coinciding operating

Cost data: battery storage. three scenarios: TNUoS/DUoS income and FFR and Econ 7		Base p	osition		Base	e position +	five years	FFR	Base position + five years FFR + Economy 7				
	Year	Year	Year	Year	Year 2019	Year	Year 2029-38	Year 2039-48	Year 2019	Year	Year 2029-38	Year	
	2019 1	2020-28	2029-38 11-20	2039-48	2019	2020-28	11-20	2039-48	2019	2020-28	11-20	2039-48	
Capital expenditure (capex)	'	2-10	11-20	21-30	'	2-10	11-20	21-30	'	2-10	II-20	21-30	
Estimated installation of 1.8MW system	900,000				900,000				900,000				
DNO network connection costs	45,000				45,000				45,000				
LV inverter/transformer/ switchgear	60,000				60,000				60,000				
Contract formation	40,000				40,000				40,000				
Operational expenditure (opex)													
Annual maintenance		27,300	44,000	65,200		27,300	44,000	65,200		28,600	46,200	68,300	
Replacement cycle			1,320,900	684,900			1,320,900	684,900			1,320,900	684,900	
Additional insurance premiums		86,100	110,200	127,900		86,100	110,200	127,900		109,519	110,200	127,900	
Physical maintenance		500	5,800	7,400		4,000	6,200	7,900		7,500	10,500	13,500	
Net cash outflows	1,045,000	113,900	1,480,900	885,400	1,045,000	117,400	1,481,300	885,900	1,045,000	122,200	1,487,800	894,600	
Income													
TNUoS		618,100	1,144,700	1,955,300		618,100	1,144,700	1,955,300		618,100	1,144,700	1,955,300	
DUoS		240,100	444,600	759,300		240,100	444,600	759,300		240,100	444,600	759,300	
FFR						282,900	0	0		282,900	0	0	
Capacity market levy		49,000	68,800	88,000		49,000	68,800	88,000		49,000	68,800	88,000	
Economy 7 opportunity										145,900	271,400	463,500	
		907,200	1,658,000	2,802,600		1,190,100	1,658,100	2,802,600		1,336,000	1,929,500	3,266,100	
Assumed average efficiency (fluctuates due to replacement cycle)		89%	81%	72%		89%	81%	72%		89%	81%	72%	
Net cash inflows (after efficiency is accounted for)	0	795,800	1,342,100	1,999,500	0	1,065,800	1,342,100	1,999,500	0	1,179,900	1,560,600	2,330,100	
Net cash flows	-1,045,000	681,900	-138,800	1,114,100	-1,045,000	948,400	-139,200	1,113,600	-1,045,000	1,057,700	73,000	1,435,700	
Present value of income	834,885				1,058,502				1,378,918				
Initial capital cost	-1,045,000				-1,045,000				-1,045,000				
Net present value	-210,115				13,502				333,918				
Percentage value of return on investment	-20%				1%				32%				

Figure 1: Inflows and outflows calculated against an initial investment in three scenarios, and the final return ger

» are a challenge to developing low carbon and low-cost heating and hot water systems. So this group will explore whether the focus should be on reducing heat demand rather than improving supply efficiency, and how close we are to satisfactory building fabric for individual buildings, or clusters of buildings, to run on internally generated heat gains.

Demand response and energy storage (DRES)

This will establish whether flexibility in when buildings and occupants use energy

LETI AND ITS IMPACT

Leti's pathway to zero carbon in 100% of all new buildings

*nearly zero (NZ)

Leti was established to support the transition of London's buildings to net zero carbon. Its focus was initially to influence energy policy in London, including the draft London Plan and the London Environment Strategy. Although still working with the GLA, Leti's focus has shifted to offering solutions and approaches to support the zero carbon transition. Many of its recommendations have been included in emerging London policy and energy assessment guidance:

Energy-use disclosure: A 'be seen' stage has been added to the energy hierarchy that cements monitoring, verifying and reporting into the London Plan.

Carbon factors: The draft London Plan recognises that Building Regulations use outdated carbonemission factors. The GLA energy assessment guidance recommends that SAP10 carbon factors (for example, 233gCO₂/kWh for electricity) are used from January 2019.

Whole life-cycle carbon: Referable schemes to calculate whole life-cycle carbon emissions through a nationally recognised assessment, and to demonstrate actions taken to reduce life-cycle carbon.

Enhanced fabric and systems: A 10% reduction in carbon emissions for residential development, and a 15% reduction for non-residential, to be achieved by using efficient building fabric and systems. Increased transparency of design: Reporting on total energy demand and glazing ratio. Fabric Energy Efficiency Standard (FEES) to be reported for residential.

Overheating: CIBSE TM52 or TM59 criteria are met using the DSY1 (2020's 50th percentile) weather file, and that sensitivity analysis is carried out for DSY2 and DSY3 (2020's 50th percentile). An overheating checklist must be completed for residential developments.

Future-proofed to achieve zero carbon onsite: All developments and district heating systems to be future-proofed to achieve zero carbon onsite by 2050.

Calculation of unregulated energy consumption: Major development proposals should calculate and minimise carbon emissions from any other part of the development, including plant or equipment, that are not covered by Building Regulations.

Cost to occupant: To be reported if heating and hot water are to be provided by heat pumps. Onsite renewable: To be maximised, regardless of whether 35% carbon-emission reduction has

Demand-side response: Plans for demand-side response and investigations into energy storage are required.

Cost model

Battery storage

Advances in battery technology and steep falls in prices for PVs and storage is making smart energy grids an attractive commercial proposition. Aecom's first cost model of the year assesses the viability of batteries across a number of scenarios

he advance in battery storage technology means the role it can play in developing a smarter energy system is becoming a commercial reality. Lithiumion batteries have fallen in price, so storage has become an increasingly attractive method of reducing energy bills and dependence on the National Grid. Coupled with a dramatic fall in the price of solar photovoltaic (PV) cells, there is a promising business case to be made for the large-scale employment of both technologies in the domestic and commercial market.

State of the market

Since 2010, there have been more than 700,000 domestic solar PV installations in the UK, resulting in a solar PV capacity of 9GW - representing a huge opportunity for battery storage to harness this energy. In the

same period, there has been a significant fall in the price of lithiumion battery storage, from £770/kWh to £180/kWh. This is plateauing, however, and Tesla and Panasonic have recently revised their prices upwards by 12% for their domestic and small business Powerwall product. Despite this, when the relative warranties and efficiency degradation rates are taken into account, products such as Tesla's offer a cost-effective solution to a consumer with sufficient load demands.

While the rest of the domestic battery-storage market catches up with the demand created, the market is not necessarily moving in the right direction. If battery storage is to be employed effectively in communities - which contain a mix of residential, retail and commercial space with varying loads – it needs to be done in partnership with the distribution network operator (DNO).

A great example is Project SCENe's Trent Basin development, which is home to Europe's largest community battery-storage system, with a capacity of 2.1MWh. Sized to be future-proof, this system aggregates demand and supply, thereby offering a far more efficient use of energy while generating a revenue stream through a firm frequency response (FFR) contract signed with the National Grid.

This concept of community energy storage gets particularly exciting when combined, potentially, with electric vehicles (EVs). Researchers and the industry are now grappling with the challenge of integrating EVs into community battery-storage systems with two-way charging points, which would allow energy to be pooled between building demands and the connected vehicles (naturally, stationary for 95% of the time). In the near future, we could see EV owners being paid when they connect to the Grid and agree to controlled charging.

The business case

Electricity consumption can be a significant cost to a commercial or industrial consumer. Battery storage represents an opportunity to not only reduce this, but also generate a return on the investment. Judging the business case for investing in battery-storage systems requires an

"By 2020, we need to have developed a definition for 'operating at net zero', with defined, measurable targets'

100% of all

designed new

buildings are zero carbon

can reduce carbon emissions. The focus will be on developing guidance on how DRES can reduce the carbon footprint of buildings, and how local authorities can assess whether a building has been designed to maximise energy-use flexibility.

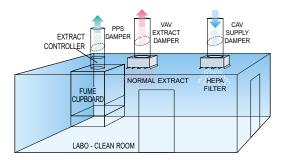
The group will also explore how DRES in a development could reduce or delay the need for grid upgrades, and its wider impact on renewables.

Leti Declaration

To achieve the Leti goals, it is crucial that industry leads by example and builds upon the changes in the draft London Plan to deliver operational net zero carbon buildings. The Leti Declaration tool has been developed to help achieve this, with a strong focus on nudging design teams to think about how their design proposals would perform in operation.

The focus is now to refine, develop and test the Leti Declaration to disclose energy data at the design stage and compare this with measured in-use performance data, by developing functionality to link to postoccupancy monitoring data.

To avert disastrous, irreversible climate change, we only have one year to develop our first version of a roadmap for achieving operational net zero carbon buildings. For this roadmap to be robust, we need as many people as possible to become involved. Sign up at www.Leti.london/2019-workstreams


CLARA BAGENAL GEORGE is a senior engineer at Elementa Consulting

Panel Mount Pressure or Velocity Transducers with remote alarms, analogue and digital interfaces. Traceable calibration certificates supplied as standard.

AIR MANAGEMENT SYSTEM

A complete turn-key system to control room pressure to +/-1Pa. Fume cupboard face velocity to 0.5m/s at high speed and provide constant air changes into the labo - clean room.

CAV AND VAV DAMPERS

Accurate air flow measurement with the unique CMR Venturi built into the airtight shut-off damper to control room pressure or constant volume.

Metal Damper

PPS EXTRACT DAMPER

Poly-propelene control and shut off valve incorporating the CMR Venturi Nozzle. This is essential when dealing with corrosive extract air especially from fume cupboard systems.

PPS Damper

PRECISION COMPONENTS FOR VENTILATION AND PROCESS CONTROL

A Division of C. M. RICHTER (EUROPE) LTD

22 Repton Court, Repton Close, Basildon, Essex SS13 1LN. GB

Website: http://www.cmr.co.uk

Tel: +44 (0)1268 287222 Fax: +44 (0)1268 287099

E-mail: sales@cmr.co.uk

